Search

Multiple Regression
Multiple Regression
  • Syllabus
  • Schedule
  • Readings
  • Assignments
  • Classes
  • Group Project
  • Blog
  • Resources
Class sessions
  • 1: Context for and Use of Regression Modelling
  • 2: Fitting Regression Models
  • 3: Slope Inference
  • 4: ANOVA Table
  • 5 SLR Review
  • 6 Take Home Exam 1
  • 7 MLR Intro
  • 8 MLR Intro 2
  • 9 Parallel & Non-Parallel Slopes
  • 10 Multicollinearity & Nested F
  • 11 Outliers, Leverage & Influence
  • 12 Bootstrap for Inference
  • 13 MLR & IPUMS - Data Wrangling
  • 14 MLR & IPUMS - Modeling
  • 15 Transformations
  • 16 Odds, Prob, ORs
  • 17 Simple Logistic - 1
  • 18 Simple Logistic 2
  • 19 Multiple Logistic - 1
  • 20 Multiple Logistic - 2
  • 21 Logistic Data Visualization
  • 22 Logistic Data Visualization
  • 23 Logistic Regression Review
  • 24 Open Review
Group Project Extra Sessions
  • Workshop 1 - GitHub
  • Workshop 2 - dplyr
  • Workshop 3 - ggplot

Bootstrap for Inference

Materials from class on Wednesday, March 4, 2020
  • In-class Activity
    • Bootstrap Intuition
    • Bootstrap for Regression
    • Practice in R

In-class Activity

Bootstrap Intuition

Bootstrap for Regression

  • Slides ( raw .Rmd file )

Practice in R

  • Lab ( raw .Rmd file )
    • Sample Solutions ( solutions raw .Rmd file )

Last updated on March 9, 2020

Edit this page


SDS 291: Multiple Regression (Spring 2020)
Smith College    Program on Statistical & Data Sciences

Dr. Benjamin Capistrant    bcapistrant@smith.edu

Monday & Wednesday    TBD
Zoom

All content licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Content 2020 Ben Capistrant

A tremendous thanks to Andrew Heiss whose course sites served as the basis for the format and structure of this site. They employ the Academic theme in blogdown and built with Hugo.

View the source at GitHub.

Cite
Copy Download