Chi-Square test by hand

SDS 291

4/15/2020

The Intuition of a χ^2 test and doing it by hand

There's more reading on this in Chapter 11.4. I'd read that first and then come back to this. From Section 9.2 in the book (p.465, 1st Ed; p.425-426, 2nd Ed).

Marital Status	Boy Child	Girl Child	Total
Married Did Not Marry Total	$176 \\ 134 \\ 310$	148 142 290	$324 \\ 276 \\ 600$

 H_0 : Single Mothers Marrying and Child Gender are independent

 H_A : Single Mothers Marrying and Child Gender are related/dependent

Calculating the Expected Values for Each Cell

 $E_{ij} = \frac{RowTotal \cdot ColumnTotal}{n}$

E: Expected (under the null) O: Observed

Marital Status	Boy Child	Girl Child	Total
Married Did Not	O: 176, E: $\frac{324\cdot310}{600} = 167.4$ O: 134, E: $\frac{276\cdot310}{600} = 142.6$	O: 148, E: $\frac{324 \cdot 290}{600} = 156.6$ O: 142, E: $\frac{276 \cdot 290}{600} = 133.4$	324 276
Marry Total	310	290	600

Calculating the χ^2 test statistic

 $\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$ $\chi^{2} = \frac{176 - 167.4}{167.4} + \frac{148 - 156.6}{156.6} + \frac{134 - 142.6}{142.6} + \frac{143 - 133.4}{133.4}$ $\chi^{2} = 0.441816 + 0.5186536 + 0.4722861 + 0.554428 = 1.987178$

If we compare this to an F distribution with 1 df (http://gallery.shinyapps.io/dist_calc), we see that the p-value is approximately 0.158. We fail to reject the null hypothesis that the a single mother marrying is independent from her child's gender.

Testing against R Output

```
M <- as.table(rbind(c(176,148), c(134,142)))</pre>
dimnames(M) <- list(Marital = c("Married", "Did Not Marry"), Child = c("Boy", "Girl"))</pre>
М
##
                   Child
## Marital
                    Boy Girl
##
                    176 148
     Married
##
     Did Not Marry 134 142
chisq<-chisq.test(M, correct = FALSE)</pre>
chisq
##
    Pearson's Chi-squared test
##
##
## data: M
## X-squared = 1.9872, df = 1, p-value = 0.1586
```

Working with Data from a DataFrame

-----|-----|-----|

There is also a function in the gmodels package called CrossTable that is helpful for this purpose when both variables are in a dataset already.

```
library(Stat2Data)
data("ICU")
gmodels::CrossTable(ICU$AgeGroup,ICU$Survive, prop.t = FALSE, prop.c = FALSE, prop.chisq = FALSE, chisq
##
##
##
    Cell Contents
## |-----|
                     ΝI
## |
           N / Row Total |
## |
## |-----|
##
##
  Total Observations in Table: 200
##
##
##
##
            | ICU$Survive
## ICU$AgeGroup |
                0 |
                              1 | Row Total |
##
  ----
                       -----|
##
                    5 |
           1 |
                             54 |
                                      59 |
##
            0.085 |
                          0.915 |
                                    0.295 |
  -----|----|-----|
##
##
           2 |
                   17 |
                             60 |
                                      77 |
##
                 0.221 |
                          0.779 |
            0.385 |
              -----|-----|-----|
##
  ----|-
##
           3 |
                   18 |
                             46 |
                                       64 |
                 0.281 |
##
           0.719 |
                                    0.320 |
## -----|-----|-----|
## Column Total |
                   40 I
                           160 l
                                      200 I
```

```
##
##
##
##
Statistics for All Table Factors
##
##
##
##
##
Chi^2 = 7.746722 d.f. = 2 p = 0.02078838
##
##
##
##
```

Proof this approach gets you the same thing as the approach we used before for the married example.

```
IC <- as.table(rbind(c(5,54), c(17,60), c(18,46)))</pre>
dimnames(IC) <- list(AgeGroup = c("Young", "Middle","Old"),Survied = c("No", "Yes"))</pre>
IC
##
           Survied
## AgeGroup No Yes
##
     Young 5 54
##
     Middle 17 60
##
     Old
          18 46
chisqIC<-chisq.test(IC)</pre>
chisqIC
##
   Pearson's Chi-squared test
##
##
## data: IC
## X-squared = 7.7467, df = 2, p-value = 0.02079
```

Now You Try!

Try for yourself using the approach from the married example to see whether you can get the same χ^2 statistic by hand!